
Qualcom

Al research

Qiqi Hou, Randall Rauwendaal, Zifeng Li, Hoang Le, Farzad Farhadzadeh, Fatih Porikli, Alex Bourd, Amir Said Qualcomm AI Research & Graphics Research

Sort-free Gaussian Splatting via Weighted Sum Rendering

Experiments														
		-				7		7				ALC: NO	Y	
			1			1		2	1		A.		1.	
Room	(LC-WSR)		GT(PSNR†)	31	DGS(30.)	20)	DIR-W	SR(28.7	1) EX	(P-WSF	R(30.87)) LC-WS	SR(32.72)
]	Mip-Ne	eRF 36	0		Tan	ks & T	s & Temples			Deep Blendir			3
Method	PSNR↑ SS		M↑ LPIPS		, PSNR↑		SSIM↑		LPIPS↓		PSNR↑ SS		IM↑ I	LPIPS↓
Plenoxels	23.08	23.08 0.6		0.463		21.08		0.719		2	23.06		795	0.510
INGP-Base	25.30	0.6	571	0.371	21.72		0.72	3 0.330			23.62	0.79		0.423
INGP-Big	25.59		599	0.331		.92	0.74		0.305		24.96			0.390
M-NeRF36			/92	0.237		2.22	0.75		0.257		29.40			0.245
3DGS	27.21			0.214		3.14	0.84		0.183		29.41			0.243
			0.804 0.211			23.61		0.842 0.177				0.902		0.229
	0	urme	ethoc	d achi	eved	com	ipara	ble	resu	lts w	vith 3	DGS	.	
Method	Task				Mip-l	NeRF36()				Tanks&	Temple	s Deep l	Blending
		bicycle	flowers	garden	stump	treehill	room	counter	r kitchen	bonsai	truck	train	drjohnso	n playroon
3DGS-Compute	Pre-processing	12.84	7.05	10.15	6.94	7.53	3.99	3.02	4.46	3.12	6.29	3.03	7.50	6.04
	Lighting	4.57	3.26	5.19	3.43	3.37	1.84	1.55	3.07	1.40	3.53	2.41	2.61	2.40
	Sorting	246.65	122.68	210.35	180.23	139.98	70.83	50.57	89.96	50.63	105.83	60.83	140.64	110.97
	Rasterization	1239.12*	115.18	608.19*	265.27	147.08	140.16	85.94	177.01	73.43	165.64	130.23	212.10	167.09
	Total	1511.96	253.60	842.15	463.06	303.68	219.31	143.03	277.35	130.58	285.11	198.01	367.93	290.32
3DGS-Graphics	Pre-processing	13.27	7.82	13.73	10.46	8.01	3.40	2.62	4.09	2.62	5.84	2.35	7.22	5.57
	Lighting	5.32	3.66	5.67	3.68	3.80	2.00	1.61	3.55	1.51	4.03	2.68	2.94	2.71
	Sorting	40.26	24.79	38.25	31.09	25.47	11.23	9.47	13.76	9.17	19.16	7.43	23.13	18.43
	Rasterization	618.83*	246.47*	697.81*	344.72*	208.28*	* 32.50	28.22	52.84	30.86	78.24	39.70	164.25*	82.45
	Total	678.08	283.11	755.89	390.33	245.95	49.46	42.25	74.56	44.47	107.64	52.48	197.86	109.46
LC-WSR	Pre-processing	6.83	3.92	5.53	6.46	4.63	1.94	1.67	2.74	1.64	3.42	1.61	4.61	2.48
	Lighting	4.07	2.81	4.36	3.67	3.23	1.41	1.35	2.98	1.16	3.21	2.31	2.91	1.70
	Rasterization	67.84	28.30	57.84	57.25	52.99	45.44	32.82	68.51	37.52	52.89	48.98	78.11	49.87
	Total	78.99	35.28	67.90	67.63	61.11	49.02	34.06	74.47	40.63	59.75	53.13	85.85	54.28
	О	ur me	thod	is on	aver	age 1	I.23×	fast	ter th	nan 3	BDG	S-Gr	aphics	s.
			Ν	lip-NeF	RF 360		Tanks & Temples			les	Deep Blending			
Method]		•							↓ PSN		SSIM↑	<u> </u>
Ours			27 19	0.80	$4 0^{-1}$	211	23.61	0.8	(4)	() 1'1'1)u	01	0.902	0.79
Ours w.o. learnab	ble paramete	ers	27.19 23.19			211 318	23.61 21.55			0.177 0.245			0.902 0.893	0.229 0.260

Ablation study on learnable parameters and view-dependent opacity.

