
Published as a conference paper at ICLR 2025

SORT-FREE GAUSSIAN SPLATTING VIA WEIGHTED
SUM RENDERING FREQUENT ASK QUESTIONS

1 DERIVATIVE

For the WSR rendering, the image can be rendered using

C =
cBwB +

∑N
i=1 ciαiw(di)

wB +
∑N

i=1 αiw(di)
, (1)

where C indicates the output image. cB and wB indicate the color and learnable weight of the
background, respectively. d indicates the depth. w(·) indicates the learnable weight function.

We can calculate the derivatives of the learnable parameters w.r.t the loss L. To save the calculation
for the backward, the sum of weights ws is saved during the forward step as

ws = wB +

N∑
i=1

αiw(di), (2)

where you might need to use atomic operations , e.g. atomicAdd(), as needed.

Then we can get the derivatives as follows,

∂L
∂αi

= w(di)
ci −C

ws
· ∂L
∂C

(3)

∂L
∂ci

=
αiw(di)

ws
· ∂L
∂C

(4)

∂L
∂wB

=
cB −C

ws
· ∂L
∂C

(5)

∂L
∂w(di)

= αi
ci −C

ws
· ∂L
∂C

(6)

For the EXP-WSR, the weight is defined as

w(di) = exp
(
−σdβi

)
, i = 1, 2, · · · ,N . (7)

The derivatives can be calculated as follows

∂L
∂σ

= −
N∑
i=1

w(di)d
β
i · ∂L

∂w(di)
(8)

∂L
∂β

= −
N∑
i=1

w(di)σln(di)d
β
i · ∂L

∂w(di)
(9)

For the LC-WSR, for the simplification, we re-wrote the w(di) as

1



Published as a conference paper at ICLR 2025

w(di) = max (0, 1− σdi) vi, i = 1, 2, · · · ,N . (10)

The derivatives can be calculated as follows

∂L
∂vi

= max (0, 1− σdi) ·
∂L

∂w(di)
(11)

∂L
∂σ

=

{
0, if 1− σdi ≤ 0

−
∑N

i=1 vidi ·
∂L

∂w(di) otherwise (12)

2 TRICKS

Training Details
Training LC-WSR is challenging due to the ReLU-like weight function, which blocks gradient flow.
To address this, we first train EXP-WSR and use its weights to initialize LC-WSR. For optimal
PSNR performance, EXP-WSR itself is initialized using the weights from vanilla 3DGS.

Learning Rate Configuration
The learning rates are specified below as a reference. These values may require tuning based on
your specific implementation:

• sigma: 0.000150
• background weight: 0.000010
• beta: 0.000001
• weights: 0.010000
• opacity sh: same as the learning rate for color sh

View-Dependent Opacity
Our implementation of view-dependent opacity closely follows the sh to color function, with a
key difference: we omit the clamping step for opacity. Specifically, we extend the input data from 3
to 4 dimensions, using the additional channel to represent opacity. This approach is both simple to
implement and efficient, as GPU hardware processes data in 4D (RGBA) by default. Thus, it incurs
no additional computational or memory overhead.

In our code, the SH weights tensor has shape N × 16× 4, where the first three channels correspond
to RGB, and the last one is for opacity. We copy the N × 16 × 3 RGB weights directly from the
official 3DGS implementation. For the opacity channel (N × 16× 1), the first N × 1× 1 entries are
initialized using RGB2SH(3dgs opacity), while the remaining N×15×1 entries are initialized
to zero.

For reference, see the relevant implementation here:
https://github.com/graphdeco-inria/gaussian-splatting/blob/
54c035f7834b564019656c3e3fcc3646292f727d/utils/sh_utils.py#L114

2

https://github.com/graphdeco-inria/gaussian-splatting/blob/54c035f7834b564019656c3e3fcc3646292f727d/utils/sh_utils.py#L114
https://github.com/graphdeco-inria/gaussian-splatting/blob/54c035f7834b564019656c3e3fcc3646292f727d/utils/sh_utils.py#L114

	Derivative
	Tricks

