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ABSTRACT

This paper presents a novel cascade multi-channel convolu-
tional neural networks(CMC-CNN) approach for face align-
ment. Several CNN are jointly used for the finally output. In
our method, each stage CNN takes the local region around
the landmarks as input, and each local patches does convolu-
tion separately, which can lead network to learn local high-
level features. Then a fully connected layer is put to learn
global information from these local features. Our methods
has achieves the state-of-the-art results when tested on the 300
Face in-the-Wild(300-W) dataset.

Index Terms— Face Alignment, CMC-CNN, Local Fea-
ture, Global Feature

1. INTRODUCTION

Facial landmark detection plays an important role in many
face analysis tasks, such as facial expression recognition, face
verification, and face recognition [1, 2, 3, 4]. The problem
has been extensively studied in recent years. For instance, the
well-known Active Shape Model [5] and the Active Appear-
ance Model [6] try to fit a generative model for global facial
appearance, such as Principal Component Analysis [7]. Al-
though they are robust to local corruptions, parameter estima-
tion for these generation models usually requires expensive
iterative steps. Besides, in real-world applications, these ap-
proaches usually fail when there exists complex appearance
variations.

To handle real-world and complex facial landmark detec-
tion scenario, some researchers focused on constructing face
templates to fit input images. For example, the recent stacked
deformable shape model [8] has achieved promising progress.
The limitations of these methods are mainly their huge com-
putational cost.

More recently, the regression-based methods have shown
to be very effective for facial landmark localization [10, 11,
12, 13]. Using local patches around selected facial landmarks
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Fig. 1. Selected facial landmark detection result from the 300-
W dataset [9]

or over the entire image region, regressors are trained as a pre-
dictor to compute the landmark coordinates. These methods
are robust and efficient and have obtained the state-of-the-art
performance. To list some examples, the explicit shape re-
gression (ESR) [11] used Haar-like feature and random ferns.
The supervised descent method (SDM) [14] used SIFT and
linear regressor. Face alignment with LBF [13] used local
binary features and linear regressors. The coarse-to-fine auto-
encoder (CFAN) uses HOG feature and auto-encoder as their
regressor at local stages. Most of these methods depends on
handy-crafted feature for processing, and therefore it is more
desirable to perform local feature learning and regressor train-
ing jointly.

Some researchers have attempted cascade of deep convo-
lutional neural networks (CNN) models to automate the fea-
ture learning process for coarse-to-fine facial landmark de-



tection [15, 16]. For example, [15] applied a first CNN to
get the coarse face location, from which the precise locations
of facial landmarks were next detected using a second CNN.
Although the method achieved very promising accuracy, the
multiple CNN models applied at different stage of the detec-
tion process break down the global information as a consistent
constraint.

The situation has motivated us to combine both the lo-
cal feature and global information into the regression frame-
work. In this paper, we design an Cascade Multi-Channel
CNN (CMC-CNN) model that is capable of coarse-to-fine fa-
cial landmark detection through an cascade process. Unlike
that in [15], our model only uses one CNN model in each
detection task. As illustrated in Figure 1, our landmark detec-
tion process consists of multiple bottom-up detection and top-
down correction pairs, such that both the local information
and global information could be utilized in a generic frame-
work. Experimental results have shown that our method is
accurate and fast.

2. CASCADE MULTI-CHANNEL CNN

In this paper, we present a multi-channel convolutional neural
network for facial landmark detection. The model works in an
cascade fashion where the initial locations of multiple patches
are fed into the bottom-up path of the model to calculate the
corrections of landmark coordinates. The top-down path then
guesses new landmark coordinates, and such bottom-up/top-
down process iterates until convergency. The next subsections
elaborate the proposed Cascade Multi-Channel CNN (CMC-
CNN) model.

2.1. The cascade of regressors

Let S ∈ R2∗p be the coordinates of facial landmarks in an im-
age I , where p denote the number of facial landmarks. In this
paper, we refer to the vector S as a shape, St as the estimate
of S at stage t, and Rtthe regressor at stage t. The ground
truth shape is Ŝ.

With N training samples {Ii, Ŝi, S
0
i }Ni=1, training process

wants to reduce the alignment errors on training set. Specifi-
cally The t stage regressor is formally learnt as follows

Rt = argmin
Rt

N∑
i=1

∥∥Ŝi − St−1
i −Rt(Ii, S

t−1
i )

∥∥
2
,

where St−1
i is the estimated shape in the previous stage t −

1. Note that all shapes in our experiments are normalized by
meanshape like ESR[11].

In testing, with a facial image I and an initial shape S0,
we update face shape in a cascade manner:

St
i = St−1

i +Rt(Ii, S
t−1
i ).

Fig. 2. Overview of our approach. Given an image and
initial shape, CMC-CNN extracts local patches around each
landmark. These patches are fed as different channels into
our CMC-CNN and then combined through a full connection
layer to predict the correction of landmark coordinate, until
convergency

The stage regressor computes ∆St based on the previous
shape St−1 and image I . In this framework, shape S should
be more and more close to the ground truth shape Ŝ though
cascade regressing.

2.2. Multi-Channel CNN

As shown in Figure 1, we take CNN as our regressor. In each
stage, we first get the local parch at each landmark, Then these
patch are resize to the same size, 15*15 in our experiments.



The network takes the raw pixels as input and performs re-
gression on the location of landmarks. Two convolutional
layer are stacked after the input layer. Note that each patches
does convolution separately. Finally a fully connected layer
connect all local convolutional layers output together.

For convolutional layer, we use Rectified Linear Units
(ReLUs) as our neurons. Then convolutional layer can be rep-
resented as follow:

Oi,j,k = max(

h−1∑
x=0

w−1∑
y=0

c−1∑
z=0

Ii−x,j−y,z ·Wx,y,z,k +Bk, 0),

where I is the input to the convolutional layer, and O is the
output. W is the weight and B is the bias.h,w, c denote the
width, height and channel of filter. Respectively k means that
is the kth filter.

Pooling layers in the network can summarize the output
of neighboring groups of neurons in the same kernel map.
we used max pooling non-overlapping pooling regions, which
can be represent as follows:

Oi,j,k = max
≤x≤p,0≤y≤p

(Ii·d+x,j·d+y,k).

Instead of combining many different models, Dropout
technique is a very effective way to reduce test errors. This
technique can reduce complex co-adaptations of neurons. In
our test time, we multiply all neurons output by 0.5, which is
a reasonable approximation.

For loss layer, we use Euclidean-loss., which computes:

loss =
1

2N

N∑
i=1

∥∥Oi −∆Si

∥∥
2
,

where N is the batch-size. O is the network output, ∆S is
the regression target, difference between ground truth shape
and current shape. Euclidean-loss has many drawbacks, but
in this place it is enough. In our future work, we will try other
loss.

2.3. Discuss

Differences with LBF. Both LBF and our work consider the
pixels in the local region of a landmark and the fully con-
nected layer in our model can be considered as a simplified
regressor like that in the LBF, if the local convolutional layer
are seen as feature extractors. But there are serval differences:
1) Compared to LBF which employs LBF feature, we take the
raw pixels as input. CNN is a strong tool that can learn high-
level features itself. At this point, we differ to many other
approaches, such as SDM using SIFT feature, CFAN using
Hog. 2) LBF employs linear regression to model the map-
ping from LBF features to a face shape, while our model uses
nonlinear regression.

Differences with DCNN. Both DCNN and our model use
nonlinear regression and take raw pixels as input. But in

DCNN builds at least one CNN for each landmarks, which
makes it very hard to process large number of landmarks, such
as 68 and 194 in [9, 17]. Besides in DCNN after the first
stage, each landmark is refined independently, which limits
the model capacity at utilizing global feature, such that the
model’s accuracy heavily relied on the first stage that uses the
global feature.

3. EXPERIMENTS

We conducted experiments on the 300 Face in-the-Wild Chal-
lenge dataset (300-W) [9] which is created from several
well-known public datasets including LFPW, AFW, Helen,
XM2VTS and IBUG. Each face image contains 68 facial
landmarks. Following the protocol suggested by [13], our
training set consist of the training sets of LFPW and Helen,
with 3148 images in total. The testing set has two parts,
specifically the common subset and the challenging subset.
The former consists of the testing sets of LFPW and Helen,
with 544 images in total, while the later is the complete IBUG
set with 135 images.

The normalized inter-pupil distance error metric was used
to evaluate the landmark detection performance. The error
averaged over all landmarks and images is calculated by,

error =
1

N

N∑
i=1

1
p

∑p
j=1

∥∥Si,j − Ŝi,j

∥∥2∥∥li − ri
∥∥2 ,

where N is the number of images, p is the number of land-
marks in each image (68 in our case), S is the shapes to com-
pute error, Ŝ is the ground truth, and l and r are the position
of the left eye corner and right eye corner, respectively.

3.1. Implementation

To train our model, we augmented the training data by ran-
domly sampling face images with slightly shifted bounding
box, each with a flipped version also. In this way we ob-
tained 75,552 images for training, and their mean shape was
used for initialization. We used the well-known Caffe [18]
to implement a four stage cascade CNN in the experiments,
and the parameters of each stage CNN can be found in Ta-
ble 1. The neural networks are trained by stochastic gradient
descent with momentum set to 0.9 and mini-batch size set to
128. We have set an equal learning rate for all learnable layers
to 0.01, and it is manually decreased each time by an order of
magnitude once the validation error stopped decreasing, to a
final rate of 0.0001. For the first stage, each layer’s weights
are initialized from a zero-mean Gaussian distribution with
σ set to 0.01 and biases set to 0. During testing, we used
10 initial shape to get the final location of landmarks, which
required 150ms for one image. Figure 3 shows the channel
structure for one local patch.



Network Stage 1 Stage 2 Stage 3 Stage 4
patch ratio 0.3 0.2 0.1 0.1

input 152 × 1 152 × 1 152 × 1 152 × 1
conv.1 52 × 16 52 × 16 52 × 16 52 × 16
conv.2 32 × 8 32 × 8 32 × 8 32 × 8

fc 1024 1024 1024 1024
output 136 136 136 136

Table 1. Summary of network structures. Patch ratio de-
note the ratio between the local patch size and face bounding
box. Input, conv.1 and conv.2 is the structure of each local
patch and fc is the fully connected layer structure

Fig. 3. Structure of a local patch’s channel. Each channel
includes 2 convolutional layers and 1 pooling layers.

Table 2 lists the error at different stages. It is clear that the
error reduces through cascade processing.

Output Error value
Stage 1 6.73
Stage 2 5.18
Stage 3 4.93
Stage 4 4.91

Table 2. Error at different stages. The common subset test
error at each stage. The error is inter-pupil distance normal-
ized landmark error averaged over all landmarks and images

3.2. Performance

We compared our methods with three existing approaches,
specifically the explicit shape regression (ESR) [11], the su-
pervised descent model(SDM) [14] and the local binary fea-
tures (LBF) [13]. As can be seen from Table 3, our method
outperformed these method by incorporating both the local
feature in a bottom-up process and the global constraint in a
top-down process into a generic regression framework. Fig-
ure 4 shows some example image results.

Method Full Common Challenging
ESR 7.58 5.28 17.00
SDM 7.52 5.60 15.40
LBF 6.32 4.95 11.98

LBF fast 7.37 5.38 15.50
Our method 6.30 4.91 12.03

Table 3. Comparison of facial landmark with state-of-the-
art methods. All the error we used is the original results in
the literature in LBF.

Fig. 4. Example results from the 300-W dataset

4. CONCLUSION

This paper presents a cascade multi-channel CNN model that
is capable of performing coarse-to-fine facial landmark de-
tection through cascade of bottom-up detection and top-down
correction. Both the local feature information and global
prior constraint could be effectively utilized into the detec-
tion process to obtain accurate facial landmark coordinates.
The proposed model takes raw pixels as input and is very
efficient. Our experiments show that the model achieves the
state-of-the-art results on the 300-W dataset. The next step
of the research is to further consider the face detection task
jointly with the landmark detection process through a multi-
task learning framework, such that faces could be reliably
detected and aligned from complex real-world environment.
The work is on-going.
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